RUS  ENG
Full version
JOURNALS // Regular and Chaotic Dynamics // Archive

Regul. Chaotic Dyn., 2011 Volume 16, Issue 1-2, Pages 24–38 (Mi rcd424)

This article is cited in 16 papers

The reversible context 2 in KAM theory: the first steps

Mikhail B. Sevryuk

Institute of Energy Problems of Chemical Physics, The Russia Academy of Sciences, Leninskii prospect 38, Bldg. 2, Moscow 119334, Russia

Abstract: The reversible context 2 in KAM theory refers to the situation where $\dim\mathop{\rm Fix} G<\frac{1}{2}\mathop{\rm codim}{\mathcal T}$, here $\mathop{\rm Fix} G$ is the fixed point manifold of the reversing involution $G$ and $\mathcal T$ is the invariant torus one deals with. Up to now, this context has been entirely unexplored. We obtain a first result on the persistence of invariant tori in the reversible context 2 (for the particular case where $\dim\mathop{\rm Fix} G=0$) using J. Moser's modifying terms theorem of 1967.

Keywords: KAM theory, Moser’s modifying terms theorem, reversible systems, reversible contexts, fixed point manifold, invariant torus.

MSC: 70K43, 70H33

Received: 03.03.2010
Accepted: 11.06.2010

Language: English

DOI: 10.1134/S1560354710520035



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026