RUS  ENG
Full version
JOURNALS // Regular and Chaotic Dynamics // Archive

Regul. Chaotic Dyn., 2014 Volume 19, Issue 3, Pages 374–414 (Mi rcd161)

This article is cited in 19 papers

Polynomial Entropies for Bott Integrable Hamiltonian Systems

Clémence Labrousseab, Jean-Pierre Marcoc

a Université Paris-Dauphine, CEREMADE, Place du Maréchal de Lattre de Tassigny 75775 Paris cedex 16, France
b École Normale Supérieure, DMA, 45 rue d’Ulm F-75230 Paris Cedex 05, France
c Université Paris 6, Analyse Algébrique, 4 Place Jussieu, 75252 Paris cedex 05, France

Abstract: In this paper, we study the entropy of a Hamiltonian flow in restriction to an energy level where it admits a first integral which is nondegenerate in the sense of Bott. It is easy to see that for such a flow, the topological entropy vanishes. We focus on the polynomial and the weak polynomial entropies ${\rm{h_{pol}}}$ and ${\rm{h_{pol}^*}}$. We show that, under natural conditions on the critical levels of the Bott first integral and on the Hamiltonian function $H$, ${\rm{h_{pol}^*}}\in \{0,1\}$ and ${\rm{h_{pol}}}\in \{0,1,2\}$. To prove this result, our main tool is a semi-global desingularization of the Hamiltonian system in the neighborhood of a polycycle.

Keywords: dynamical complexity, entropy, integrability, Bott integrable Hamiltonians.

MSC: 70H06, 37J05, 37G25

Received: 13.01.2014
Accepted: 27.04.2014

Language: English

DOI: 10.1134/S1560354714030083



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026