RUS  ENG
Full version
JOURNALS // Regular and Chaotic Dynamics // Archive

Regul. Chaotic Dyn., 2023 Volume 28, Issue 4-5, Pages 690–706 (Mi rcd1228)

This article is cited in 5 papers

Special Issue: On the 80th birthday of professor A. Chenciner

Three-Body Relative Equilibria on $\mathbb{S}^2$

Toshiaki Fujiwaraa, Ernesto Pérez-Chavelab

a College of Liberal Arts and Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, 252-0329 Kanagawa, Japan
b Department of Mathematics, ITAM, Río Hondo 1, Col. Progreso Tizapán, 01080 México, México

Abstract: We study relative equilibria ($RE$) for the three-body problem on $\mathbb{S}^2$, under the influence of a general potential which only depends on $\cos\sigma_{ij}$ where $\sigma_{ij}$ are the mutual angles among the masses. Explicit conditions for masses $m_k$ and $\cos\sigma_{ij}$ to form relative equilibrium are shown. Using the above conditions, we study the equal masses case under the cotangent potential. We show the existence of scalene, isosceles, and equilateral Euler $RE$, and isosceles and equilateral Lagrange $RE$. We also show that the equilateral Euler $RE$ on a rotating meridian exists for general potential $\sum_{i<j}m_i m_j U(\cos\sigma_{ij})$ with any mass ratios.

Keywords: relative equilibria, Euler and Lagrange configurations.

MSC: 70F07, 70F10, 70F15

Received: 16.03.2023
Accepted: 29.08.2023

Language: English

DOI: 10.1134/S1560354723040111



© Steklov Math. Inst. of RAS, 2026