Abstract:
We report a theoretical study of the spatiotemporal dynamics of wide-aperture lasers with a homogeneous line broadening using the Maxwell–Bloch model. Three dynamic classes of lasers (A, B, and C) are considered, for which a linear stability analysis of homogeneous steady-state generation is performed. It is shown that in class A and B lasers, the development of wave instabilities leads to the formation of complex transverse optical structures, whereas class C lasers are characterized by a homogeneous Hopf instability, accompanied by spatially homogeneous intensity oscillations. The secondary instabilities arising in class C lasers are studied using the Floquet method, and the parameters at which nonlinear optical structures, including spiral wave domains, are formed are determined. Numerical simulations confirm theoretical predictions and demonstrate the feasibility of suppressing secondary instabilities using external optical injection.