Abstract:
The theoretical and practical uniqueness of the results obtained by the method of nonlinear laser fluorimetry is considered. The theoretical uniqueness of measuring three basic photophysical parameters (the absorption cross section, the excited-state lifetime, and the quantum yield of intersystem crossing) from fluorescence saturation curves is proved rigorously mathematically. The practical uniqueness of the results obtained by this method is proved by the measurements of the absorption cross section and the excited-state lifetime from the calculated curves of fluorescence saturation simulating fluorescence saturation of aqueous solutions of rhodamine 6G, eosin, and Bengal rose dyes.