Abstract:
We present high resolution laser spectroscopy of Cs vapours confined in a unique optical cell of sub-micrometric and micrometric thickness, where a strong spatial anisotropy is present for the time of interaction between the atoms and laser radiation. Similarly to the spectra of selective specular reflection, the Doppler-free spectra of absorption and fluorescence are observed, not revealing cross-over resonances that will be useful for frequency stabilisation, provided the cell is cheap and compact. A new resonance in the fluorescence of closed transition is studied, demonstrating its high sensitivity to elastic atom – atom and atom – dielectric surface collisions. The theoretical modelling performed is in agreement with the experimental observations.
Keywords:high-resolution laser spectroscopy, nanometric atomic vapour layers, transient effect in a nanometre-thin cell.