RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii // Archive

Probl. Peredachi Inf., 2005 Volume 41, Issue 2, Pages 26–41 (Mi ppi93)

Coding Theory

Weight Functions and Generalized Weights of Linear Codes

D. Yu. Nogin

Institute for Information Transmission Problems, Russian Academy of Sciences

Abstract: We prove that the weight function $\mathrm{wt}\colon\mathbb F_q^k\to\mathbb Z$ on a set of messages uniquely determines a linear code of dimension $k$ up to equivalence. We propose a natural way to extend the $r$th generalized Hamming weight, that is, a function on $r$-subspaces of a code $C$, to a function on $\mathbb F_q^{\binom kr}\cong\Lambda^rC$. Using this, we show that, for each linear code $C$ and any integer $r\le k=\dim C$, a linear code exists whose weight distribution corresponds to a part of the generalized weight spectrum of $C$, from the $r$th weights to the $k$th. In particular, the minimum distance of this code is proportional to the $r$th generalized weight of $C$.

UDC: 621.391.15

Received: 02.12.2003
Revised: 16.11.2004


 English version:
Problems of Information Transmission, 2005, 41:2, 91–104

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026