RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii // Archive

Probl. Peredachi Inf., 1987 Volume 23, Issue 1, Pages 47–56 (Mi ppi753)

This article is cited in 3 papers

Coding Theory

An Improvement of Greismer Bound for Some Classes of Distances

S. M. Dodunekov, N. L. Manev


Abstract: Linear binary codes are considered. We prove that for $d=2^{k-2}-2^{à}-2^{Ü}$, $0\leq b<a\leq k-3$, $2\leq a$, $9\leq k$, the block length of a $k$-dimensional code with code distance $d$ is not less than
$$ 2+\sum_{j=0}^{k-1}\lceil\frac{d}{2^j}\rceil. $$


UDC: 621.391.1:519.725


 English version:
Problems of Information Transmission, 1987, 23:1, 38–46

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026