RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii // Archive

Probl. Peredachi Inf., 2006 Volume 42, Issue 4, Pages 65–76 (Mi ppi61)

This article is cited in 11 papers

Coding Theory

An Extension Theorem for Arcs and Linear Codes

I. N. Landjeva, A. P. Roussevab

a Institute of Mathematics and Informatics, Bulgarian Academy of Sciences
b Sofia University St. Kliment Ohridski, Faculty of Mathematics and Computer Science

Abstract: We prove the following generalization to the extension theorem of Hill and Lizak: For every nonextendable linear $[n,k,d]_q$ code, $q=p^s$, $(d,q)=1$, we have
$$ \sum_{i\not\equiv0,d\,(\mathrm{mod}\;q)}A_i>q^{k-3}r(q), $$
where $q+r(q)+1$ is the smallest size of a nontrivial blocking set in $\mathrm{PG}(2,q)$. This result is applied further to rule out the existence of some linear codes over $\mathbb F_4$ meeting the Griesmer bound.

UDC: 621.391.15

Received: 15.11.2005
Revised: 27.05.2006


 English version:
Problems of Information Transmission, 2006, 42:4, 319–329

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026