RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii // Archive

Probl. Peredachi Inf., 1997 Volume 33, Issue 1, Pages 75–86 (Mi ppi361)

This article is cited in 15 papers

Coding Theory

On the Propagation Criterion for Boolean Functions and on Bent Functions

V. V. Yashchenko


Abstract: We consider the parameters of a Boolean function that characterize its position relative to the first-order Reed-Muller code $R(1,n)$. We establish simple criteria of a given vector being, for a given Boolean function, unessential, a linear structure, or belonging to $P\mathbb C(f)$. We find conditions under which the set $P\mathbb C(f)$ contains some linear subspace (without zero). We show that the greater the dimension of the subspace, the more distant such functions are from $R(1,n)$. We obtain a new description of the class of bent functions most remote from $R(1,n)$.

UDC: 621.391.1:512

Received: 31.10.1995
Revised: 28.06.1996


 English version:
Problems of Information Transmission, 1997, 33:1, 62–71

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026