RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii // Archive

Probl. Peredachi Inf., 2018 Volume 54, Issue 2, Pages 73–85 (Mi ppi2267)

This article is cited in 1 paper

Large Systems

Clique numbers of random subgraphs of some distance graphs

A. S. Gusev

Department of Mathematical Statistics and Random Processes, Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia

Abstract: We consider a class of graphs $G(n,r,s)=(V(n,r),E(n,r,s))$, defined as follows:
$$ \begin{aligned} & V(n,r)=\{\boldsymbol x=(x_1, x_2,\dots,x_n)\colon x_i\in\{0,1\},\ x_1+x_2+\dots+x_n=r\},\\ & E(n,r,s)=\{\{\boldsymbol x,\boldsymbol y\}\colon(\boldsymbol x,\boldsymbol y)=s\}, \end{aligned} $$
where $(x,y)$ is the Euclidean scalar product. We study random subgraphs $\mathcal G(G(n,r,s), p)$ with edges independently chosen from the set $E(n,r,s)$ with probability $p$ each. We find nontrivial lower and upper bounds on the clique number of such graphs.

UDC: 621.391.1+519.1

Received: 18.12.2017
Revised: 23.03.2018


 English version:
Problems of Information Transmission, 2018, 54:2, 165–175

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026