RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii // Archive

Probl. Peredachi Inf., 2015 Volume 51, Issue 3, Pages 31–40 (Mi ppi2178)

This article is cited in 3 papers

Coding Theory

Reconstruction of eigenfunctions of a $q$-ary $n$-dimensional hypercube

A. Yu. Vasil'eva

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia

Abstract: We prove that values of an arbitrary eigenfunction of a $q$-ary $n$-dimensional hypercube can be uniquely reconstructed at all vertices inside a ball if its values on the corresponding sphere are known; we give sufficient conditions for such reconstruction in terms of the eigenvalue and the ball radius. We show that in the case where values of an eigenfunction are given on a sphere of radius equal to the corresponding eigenvalue, all values of the eigenfunction can be reconstructed; similarly to the previous case, sufficient numerical conditions are presented.

UDC: 621.391.1+519.1

Received: 16.12.2014
Revised: 30.04.2015


 English version:
Problems of Information Transmission, 2015, 51:3, 231–239

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026