RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii // Archive

Probl. Peredachi Inf., 2013 Volume 49, Issue 2, Pages 3–16 (Mi ppi2105)

This article is cited in 6 papers

Information Theory

Some properties of Rényi entropy over countably infinite alphabets

M. Kovačević, I. Stanojević, V. Šenk

University of Novi Sad, Serbia

Abstract: We study certain properties of Rényi entropy functionals $H_\alpha(\mathcal P)$ on the space of probability distributions over $\mathbb Z_+$. Primarily, continuity and convergence issues are addressed. Some properties are shown to be parallel to those known in the finite alphabet case, while others illustrate a quite different behavior of the Rényi entropy in the infinite case. In particular, it is shown that for any distribution $\mathcal P$ and any $r\in[0,\infty]$ there exists a sequence of distributions $\mathcal P_n$ converging to $\mathcal P$ with respect to the total variation distance and such that $\lim_{n\to\infty}\lim_{\alpha\to1+} H_\alpha(\mathcal P_n)=\lim_{\alpha\to1+}\lim_{n\to\infty}H_\alpha(\mathcal P_n)+r$.

UDC: 621.391.1+519.72

Received: 03.12.2012
Revised: 30.01.2013


 English version:
Problems of Information Transmission, 2013, 49:2, 99–110

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026