RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii // Archive

Probl. Peredachi Inf., 2009 Volume 45, Issue 4, Pages 18–25 (Mi ppi1996)

This article is cited in 5 papers

Coding Theory

The group of permutational automorphisms of a $q$-ary Hamming code

E. V. Gorkunov

Novosibirsk State University

Abstract: We prove that the group of permutation automorphism of a $q$-ary Hamming code of length $n=(q^m-1)/(q-1)$ is isomorphic to the unitriangular group $\mathbf{UT}_m(q)$ if the code has a parity-check matrix composed of all columns of the form $(0\dots0\,1*\dots*)^\mathsf T$. We also show that the group of permutation automorphisms of a cyclic Hamming code cannot be isomorphic to $\mathbf{UT}_m(q)$. We thus show that equivalent codes can have different permutation automorphism groups.

UDC: 621.391.15

Received: 30.05.2008
Revised: 15.10.2009


 English version:
Problems of Information Transmission, 2009, 45:4, 309–316

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026