RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii // Archive

Probl. Peredachi Inf., 1993 Volume 29, Issue 4, Pages 24–34 (Mi ppi198)

This article is cited in 1 paper

Methods of Signal Processing

Nonparametric Recursive Estimation in Nonlinear ARX Models

P. Dukan, A. B. Tsybakov


Abstract: Consider the general ${\rm ARX}(k,g)$ nonlinear process defined by the recurrence relation $y_n=f(y_{n-1},\dots,y_{n-k},x_n,\dots,x_{n-q+1})+\zeta_n$, where $\{x_n\}$, $\{\zeta_n\}$ are sequences of independent identically distributed random variables. We propose a recursive nonparametric estimator of the function $f$ and we prove its strong consistency under general assumptions on the model. We study the model properties guaranteeing that these assumptions are satisfied.

UDC: 621.391.1:519.28

Received: 21.12.1992


 English version:
Problems of Information Transmission, 1993, 29:4, 318–327

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026