RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii // Archive

Probl. Peredachi Inf., 1970 Volume 6, Issue 3, Pages 50–59 (Mi ppi1752)

Nonlinear Transformations of Gaussian Processes

Yu. M. Ryzhov


Abstract: The article considers nonlinear transformations of Gaussian process $\xi(t)$ which have the form $\int_0^Tf(\xi(t))dt$ It is shown that for a certain class of Gaussian processes, $\xi(t)$ can specify the function $\mathbf I(x)=\int_0^T\delta(x+\xi(t))dt$, where $\delta(t)$ is the Dirac delta function. The properties of $\mathbf I(x)$ are studied.

UDC: 519.27

Received: 30.05.1968


 English version:
Problems of Information Transmission, 1970, 6:3, 230–237

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026