RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii // Archive

Probl. Peredachi Inf., 1993 Volume 29, Issue 2, Pages 41–47 (Mi ppi174)

This article is cited in 2 papers

Information Theory and Coding Theory

New Bounds for the Minimum Length of Binary Linear Block Codes

S. M. Dodunekov, S. B. Encheva, A. N. Ivanov


Abstract: Let $n(k,d)$ be the smallest integer $n$ for which a binary linear code of length $n$, dimension $k$ and minimum distance $d$ exists. We prove that $n(9,24)\geq 54, n(9,28)\geq62, n(9,30)\geq 66, n(9,56)\geq 117, n(10,44)\geq 95, n(10,60)\geq 125, n(13,56)\geq 122, n(14,48)\geq 107$ and review known results for $n(9,d)$.

UDC: 621.391.15

Received: 22.09.1992


 English version:
Problems of Information Transmission, 1993, 29:2, 132–139

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026