RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii // Archive

Probl. Peredachi Inf., 1992 Volume 28, Issue 3, Pages 60–67 (Mi ppi1356)

This article is cited in 1 paper

Methods of Signal Processing

Exact Asymptotic Expression for the Density of Multiple Stochastic Integrals

E. I. Ostrovskii


Abstract: We consider the exact asymptotic expression for the density of multiple stochastic integrals of the form
\begin{gather*} I-m(h)=\int_{X^m}h(x_1,x_2,\dots,x_m)\prod_{i=1}^mZ_G(dx_i), \end{gather*}
where $Z_G$ is the Gaussian orthogonal stochastic measure. In the two-dimensional case the result is general; for $m>2$, the kernel $h$ is required to satisfy the orthogonal symmetry condition.

UDC: 621.391.1:519.2

Received: 04.10.1991


 English version:
Problems of Information Transmission, 1992, 28:3, 250–257

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026