RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii // Archive

Probl. Peredachi Inf., 2008 Volume 44, Issue 2, Pages 101–109 (Mi ppi1274)

This article is cited in 3 papers

Information Protection

Occurrence Indices of Elements in Linear Recurrence Sequences over Primary Residue Rings

D. N. Bylkov, O. V. Kamlovskii


Abstract: We study distances to the first occurrence (occurrence indices) of a given element in a linear recurrence sequence over a primary residue ring $\mathbb{Z}{p^n}$. We give conditions on the characteristic polynomial $F(x)$ of a linear recurrence sequence $u$ which guarantee that all elements of the ring occur in $u$. For the case where $F(x)$ is a reversible Galois polynomial over $\mathbb{Z}{p^n}$, we give upper bounds for occurrence indices of elements in a linear recurrence sequence $u$. A situation where the characteristic polynomial $F(x)$ of a linear recurrence sequence $u$ is a trinomial of a special form over $\mathbb{Z}_4$ is considered separately. In this case we give tight upper bounds for occurrence indices of elements of $u$.

UDC: 621.391.1:004.7

Received: 30.09.2007
Revised: 11.03.2008


 English version:
Problems of Information Transmission, 2008, 44:2, 161–168

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026