RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii // Archive

Probl. Peredachi Inf., 2009 Volume 45, Issue 1, Pages 27–35 (Mi ppi1256)

This article is cited in 6 papers

Coding Theory

On transitive partitions of an $n$-cube into codes

F. I. Solov'evaab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
b Novosibirsk State University

Abstract: We present methods to construct transitive partitions of the set $E^n$ of all binary vectors of length $n$ into codes. In particular, we show that for all $n=2k-1$, $k\ge 3$, there exist transitive partitions of $E^n$ into perfect transitive codes of length $n$.

UDC: 621.391.15:514

Received: 18.01.2008
Revised: 26.09.2008


 English version:
Problems of Information Transmission, 2009, 45:1, 23–31

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026