RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii // Archive

Probl. Peredachi Inf., 2005 Volume 41, Issue 3, Pages 58–63 (Mi ppi107)

This article is cited in 1 paper

Large Systems

Unsimplifiable Descriptions for Kolmogorov Complexity Conditions

M. A. Ustinov

M. V. Lomonosov Moscow State University

Abstract: Assume that a program $p$ produces an output string $b$ for an input string $a$: $p(a)=b$. We look for a “reduction” (simplification) of $p$, i.e., a program $q$ such that $q(a)=b$ but $q$ has Kolmogorov complexity smaller than $p$ and contains no additional information as compared to $p$ (this means that the conditional complexity $K(q\mid p)$ is negligible). We show that, for any two strings $a$ and $b$ (except for some degenerate cases), one can find a nonreducible program $p$ of any arbitrarily large complexity (any value larger than $K(a)+K(b\mid a)$ is possible).

UDC: 621.391.1:519

Received: 06.12.2004
Revised: 24.05.2005


 English version:
Problems of Information Transmission, 2005, 41:3, 237–242

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026