Abstract:
The problem of predicting the effective elastic properties of composites with prescribed random location and radius variation in spherical inclusions is solved using the generalized self-consistent method. The problem is reduced to the solution of the averaged boundary-value problem of the theory of elasticity for a single inclusion with an inhomogeneous transition layer in a medium with desired effective elastic properties. A numerical analysis of the effective properties of a composite with rigid spherical inclusions and a composite with spherical pores is carried out. The results are compared with the known solution for the periodic structure and with the solutions obtained by the standard self-consistent methods.