Abstract:
A mathematical model for the discharge of a gas-saturated liquid from cylindrical channels is developed. Two limiting cases of linear and quadratic, relations between the flow friction force and the flow velocity are considered. It is established that the process of evacuation, from a semi-infinite channel consists of two stages. In the initial stage, the flow drag can be ignored, and the process of discharge is described by a Riemann wave solution. For the next stage, in which inertia is insignificant, nonlinear equations are obtained and self-similar solutions are constructed for them. The problem of flow through a slot in a tank of finite volume is solved. It is shown that the discharge proceeds either in a gas-dynamic choking regime or in a subsonic regime, depending on the conditions inside the tank and at the outlet. Examples of numerical calculations are given.