Abstract:
Within the framework of the linear theory of hydrodynamic stability, the characteristics of the Taylor–Görtler waves are numerically simulated at the initial section of a supersonic axisymmetric jet taking into account the effects of flow nonparallelism and expansion. The special features of the streamwise dynamics of the growth rates of various wave components for turbulent. weakly nonisobaric, and laminar jets are studied. It is shown that the growth rates depend strongly on the quantity on which their determination is based, the position of the point where it is measured, and the flow regime. Some experimental results are discussed, and a method for determining the growth rates is proposed.