Abstract:
The classical shallow-water equations describing the propagation of long waves in flow without a shear of the horizontal velocity along the vertical coincide with the equations describing the isentropic motion of a polytropic gas for a polytropic exponent $\gamma$ = 2 (in the theory of fluid wave motion, this fact is called the gas-dynamic analogy). A new mathematical model of long-wave theory is derived that describes shear free-boundary fluid flows. It is shown that in the case of one-dimensional motion, the equations of the new model coincide with the equations describing nonisentropic gas motion with a special choice of the equation of state, and in the multidimensional case, the new system of long-wave equations differs significantly from the gas motion model. In the general case, it is established that the system of equations derived is a hyperbolic system. The velocities of propagation of wave perturbations are found.