RUS  ENG
Full version
JOURNALS // Applied Mathematics & Physics // Archive

Applied Mathematics & Physics, 2016, Volume 42, Issue 6, Pages 5–11 (Mi pmf78)

MATHEMATICS

On boundary values of products $B_\alpha$

V. S. Zakharyan, R. V. Dallakyan, И. В. Оганисян

Национальный политехнический университет Армении

Abstract: Using the Riemann-Liouville integration-differentiation operator M. M. Djrbashyan general- ized the class of R. Nevanlinna's meromorphic functions in the unit circle including the product $B_\alpha(-1<\alpha<\infty)$, which in the special case of $\alpha=0$ coincide with the Blaschke product. Furthermore, when $(-1<\alpha<0)$, M. M. Djrbashyan and V. S. Zakaryan showed a connection between the products $B_\alpha$ and B of Blaschke.In this work, using this connection theorem we prove that the infinite product $B_\alpha(-1<\alpha<0)$ doesn't belong to $D^2_0$ - the class of analytic functions in the unit circle with finite Dirichlet integral. This means$B_\alpha$ that the derivative of B doesn't belong to the class $H^1$ .

Keywords: riemann-Liouville integration-differentiation operator, blaschke product, djrbashyan product, djrbashyan kernels, dirichlet-type classes.

UDC: 517.53



© Steklov Math. Inst. of RAS, 2026