Abstract:
Boron-doped nanodiamond (ND) films on silica substrates have been obtained by the method of microwave plasma-enhanced chemical vapor deposition (MWPECVD). Using special technological regimes ensuring the growth of boron-doped ND films after the deposition of an initial ND nucleation layer with small roughness ($<$ 15 nm) and a large number of diamond phase nucleation centers per unit surface area ($>$ 10$^{10}$ cm$^{-2}$), it is possible to obtain conducting ND films transparent in the UV spectral range. Dependence of the transparency and conductivity of the obtained films on the boron concentration and methane content in the working methane-hydrogen mixture has been studied.