Abstract:
A flow type barrier-discharge UV photoreactor intended for irradiation of liquids and gases has been developed. In the proposed reactor design, both the discharge region and processed medium occur inside the bulb of an excilamp and the electrodes are made of an UV-reflecting material. The UV radiation intensity in the photoreactor is determined using the photochemical reaction of acetic acid decomposition (CH$_3$COOH+$h\nu$$\to$ CH$_4$+CO$_2$) that takes place under the action of KrCl exciplex emission at 222 nm, and the UV exposure dose is evaluated by measuring the evolved gas volume. The experiments showed that the UV radiation intensity in the proposed photoreactor is higher by an order of magnitude than that at the surface of an excilamp with analogous geometry.