RUS  ENG
Full version
JOURNALS // Pisma v Zhurnal Tekhnicheskoi Fiziki // Archive

Pisma v Zhurnal Tekhnicheskoi Fiziki, 2022 Volume 48, Issue 18, Pages 41–44 (Mi pjtf7404)

This article is cited in 1 paper

Peculiarities of generation of extreme electromagnetic fields in a dielectric mesoscale sphere with the presence of the environment

I. V. Minina, O. V. Minina, Song Zhoub

a Tomsk Polytechnic University, Tomsk, Russia
b Jiangsu Key Laboratory of Advanced Manufacturing Technology, Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai’an, China

Abstract: The results of numerical simulation based on the Mie theory of the effect of superresonance (high-order Fano resonance) for a mesoscale dielectric sphere immersed in air are presented, since the environment in the form of a vacuum is an idealization that is almost never realized in nature. Using the example of a particle with a refractive index of 1.5 and a size parameter $q\sim$ 26 and $q\sim$ 38, it was demonstrated for the first time that a change in the refractive index of the environment by 2.4$\cdot$10$^{-4}$ leads to a decrease in the field intensity in the region of the shadow pole of the sphere by an order of magnitude and a shift of the resonant value of the size parameter $q$ to the short-wavelength region. In this case, the relative intensities of the resonant peaks for both the magnetic and electric fields in the vicinity of the poles of the sphere in the optical range can reach values characteristic of a particle in vacuum (of the order of 10$^6$–10$^7$), with an appropriate adjustment of the resonant size parameter.

Keywords: high-order Fano resonance, superresonance, mesotronics, field intensity, extreme magnetic field.

Received: 07.07.2022
Revised: 07.08.2022
Accepted: 07.08.2022

DOI: 10.21883/PJTF.2022.18.53398.19300



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026