Abstract:
GaAs/GaSb type-II quantum-dot heterostructures were grown by molecular-beam epitaxy. The circularly polarized photoluminescence of these samples in a magnetic field up to 4.7 T in the Faraday configuration was investigated. It was found that the emission from quantum dots in a magnetic field is $\sigma^-$-polarized, which corresponds to the electron-spin component along the magnetic-field vector of +1/2. The degree of polarization increases with increasing excitation intensity. The observed effect is explained in terms of spin injection from the GaSb matrix, where spin orientation appears owing to the Zeeman splitting of the conduction band. An increase in the degree of polarization occurs due to a reduction in the charge-carrier radiative lifetime in type-II quantum dots with increasing excitation level.