Abstract:
Luminescent and structural properties of $n$-FZ-Si and $n$-Cz-Si implanted with Si ions at amorphizing doses and annealed at 1100$^\circ$C in a chlorine-containing atmosphere have been studied. An analysis of proton Rutherford backscattering spectra of implanted samples demonstrated that an amorphous layer is formed, and its position and thickness depend on the implantation dose. An X-ray diffraction analysis revealed that defects of the interstitial type are formed in the samples upon annealing. Photoluminescence spectra measured at 78 K and low excitation levels are dominated by the dislocation-related line $D$1, which is also observed at 300 K. The peak position of this line, its full width at half-maximum, and intensity depend on the conduction type of Si and implantation dose. As the luminescence excitation power is raised, a continuous band appears in the spectrum. A model is suggested that explains the fundamental aspects of the behavior of the photoluminescence spectra in relation to the experimental conditions.