Abstract:
Peak modulation frequency of lasers based on self-organized quantum dots is calculated taking into account the effect of nonlinear gain saturation. Because of a large nonlinear gain coefficient and a reduction in the differential gain with increasing optical losses, the peak modulation frequency is attained for an optimum loss level that is significantly lower than the saturated optical gain in the active region. For lasers based on multiply stacked arrays of quantum dots, the peak modulation frequency first increases with increasing number of quantum-dot layers before leveling off, with the limiting value being inversely proportional to the nonlinear gain coefficient.