Abstract:
It is shown that one can use low-coherence tandem interferometry to measure the substrate temperature during the course of molecular-beam epitaxy in the case of oblique incidence of the probing light onto the surface. The temperature conditions in the Ob’-M installation for growing heteroepitaxial structures of cadmium and mercury tellurides and in the RIBER SIVA-21 installation for the growth of silicon-germanium structures are investigated. Calibration curves relating the readings of the standard thermocouple fixed within the heater to the true substrate temperature in the range 0–500$^\circ$C are created.