Abstract:
The photocurrent spectra of Si:Er/Si epitaxial diode structures are studied. It is shown that the nature of the sub-band-gap photoresponse is determined by the epitaxial growth temperature of the Si:Er layer and is not related to the composition of erbium emission centers. It is found that the absorption of light with photon energies lower than the energy-gap of silicon is determined by impurity-defect complexes that appear during the growth of the epitaxial layer and form a quasi-continuous spectrum of states in the energy gap of silicon. It is assumed that these impurity centers are not related to optically active erbium centers and are not involved in excitation-energy transfer to the rare-earth impurity.