Abstract:
The spectral and time characteristics of photoluminescence associated with the radiative recombination of charge carriers in SiGe/Si(001) multilayer structures with self-assembled Ge:Si islands are investigated. The time dependences of the photoluminescence of Ge:Si islands in a wide range of delay times after the pump pulse are considered at various optical-excitation levels. The photoluminescence-excitation spectra from Ge(Si) islands in the SiGe/Si(001) structures are investigated in the region of band-to-band and subband optical pumping corresponding to various time components in the photoluminescence-relaxation kinetics. A significant difference in the shape of the excitation spectra is revealed for fast (0–100 $\mu$s) and slow (100 $\mu$s–50 ms) components of the photoluminescence signal from the islands. The significant dependence of the photoluminescence-excitation spectra of Ge(Si)/Si(001) islands on the optical-pump power is shown to be associated with the prolonged diffusion of nonequilibrium charge carriers from bulk-silicon layers to Ge:Si islands at high excitation levels.