RUS  ENG
Full version
JOURNALS // Fizika i Tekhnika Poluprovodnikov // Archive

Fizika i Tekhnika Poluprovodnikov, 2022 Volume 56, Issue 11, Pages 1075–1081 (Mi phts7148)

Micro- and nanocrystalline, porous, composite semiconductors

Optical properties of Cu$_2$O nanowhiskers

M. È. Labzovskayaa, B. V. Novikova, A. Yu. Serova, S. V. Mikusheva, V. Yu. Davydovb, A. N. Smirnovb, V. G. Talalaeva

a Saint Petersburg State University, 199034 St. Petersburg, Russia
b Ioffe Institute, 194021 St. Petersburg, Russia

Abstract: The optical properties of Cu$_2$O nanowhiskers grown by the liquid method with material deposition in an electric field have been studied. The spectral lines forbidden by the selection rules for perfect Cu$_2$O crystals were found in the Raman spectra. The nature of related phonon states is analyzed. In the photoluminescence spectra in the red and near-IR regions, broad bands of defective origin are observed. It was found that the presence of a band at 650 nm (1.9 eV) is a specific feature of the photoluminescence of nanowhiskers. Its properties are studied and possible radiation mechanisms are discussed. In the intrinsic absorption region of nanowhiskers, the photoluminescence band at 572 nm (2.17 eV) associated with band–band transitions is detected. At a low excitation level, the emission of a free exciton $n$ = 1 of the yellow exciton series is observed with simultaneous emission of an optical phonon.

Keywords: Cu$_2$O, nanowhiskers, Raman, PL, exciton localization.

Received: 02.11.2022
Revised: 14.11.2022
Accepted: 14.11.2022

DOI: 10.21883/FTP.2022.11.54258.4272



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026