Abstract:
On the basis of numerical solution to the Maxwell–Bloch equations within an one-dimensional two-level model of a superradiant laser with a symmetric cavity where a photon lifetime is less than an incoherent relaxation time of the optical dipole oscillations of active centers, we find that a spontaneous asymmetric generation of the counter-propagating waves is possible under a continuous homogeneous pumping of an active medium. We show that such a phenomenon of a symmetry breaking of the spatial profiles of the counter-propagating waves of an electromagnetic field as well as the polarization and population inversion of an active medium in the considered case of a weak inhomogeneous broadening of an operating transition is caused by an asymmetric half-wavelength nonlinear grating of the population inversion of the transition's energy levels which is produced by these waves.