RUS  ENG
Full version
JOURNALS // Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics) // Archive

PFMT, 2021 Issue 3(48), Pages 76–81 (Mi pfmt798)

MATHEMATICS

Generalized $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups

I. N. Safonovaab, A. N. Skibab

a Belarusian State University, Minsk
b Francisk Skorina Gomel State University

Abstract: Throughout the article, all groups are finite and $G$ always denotes a finite group. Moreover, $\sigma$ is some partition of the set of all primes $\mathbb{P}$, i. e. $\sigma=\{\sigma_i\mid i\in I\}$, where $\mathbb{P}=\bigcup_{i\in I}\sigma_i$ and $\sigma_i\cap\sigma_j=\varnothing$ for all $i\ne j$. A $\sigma$-property of a group is any of its properties that do not depend on the choice of the partition $\sigma$ of the set $\mathbb{P}$. This work is devoted to further the study of the $\sigma$-properties of a group. A lot of known results are generalized.

Keywords: finite group, $\sigma$-nilpotent group, $\sigma$-soluble group, $\sigma$-subnormal subgroup, Schmidt group.

UDC: 512.542

Received: 15.06.2021

DOI: 10.54341/20778708_2021_3_48_76



© Steklov Math. Inst. of RAS, 2026