RUS  ENG
Full version
JOURNALS // Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics) // Archive

PFMT, 2017 Issue 3(32), Pages 61–65 (Mi pfmt520)

MATHEMATICS

On $\sigma$-permutable subgroups of finite groups

V. M. Selkin, A. N. Skiba

F. Scorina Gomel State University

Abstract: Let $\{\sigma_i \mid i\in I\}$ be some partition of the set of all primes $\mathbb{P}$ and let $G$ be a finite group. $G$ is said to be $\sigma$-full if $G$ has a Hall $\sigma_i$-subgroup for all $i$. A subgroup $A$ of $G$ is said to be $\sigma$-permutable in $G$ if $G$ is $\sigma$-full and $A$ permutes with all Hall $\sigma_i$-subgroups $H$ of $G$ (that is, $AH=HA$) for all $i$. In this paper, we give a survey of some recent results on $\sigma$-permutable subgroups of finite groups.

Keywords: finite group, a Robinson $\sigma$-complex of a group, $\sigma$-permutable subgroup, $\sigma$-soluble group, $\sigma$-supersoluble group, $\sigma$-CS-group.

UDC: 512.542

Received: 14.06.2017

Language: English



© Steklov Math. Inst. of RAS, 2026