RUS  ENG
Full version
JOURNALS // Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics) // Archive

PFMT, 2017 Issue 3(32), Pages 36–42 (Mi pfmt515)

This article is cited in 1 paper

MATHEMATICS

On the intersections of maximal subgroups of finite groups containing formation radicals

L. M. Belokon

Mogilev State University of Food Technologies

Abstract: For nonempty radical formation $\mathfrak{F}$ and a finite group $G$ the following statement was proved: if there exist maximal subgroups of $G$ containing $G_{\mathfrak{F}}$, but not containing $G_{\mathfrak{FN}}$, that is $\Phi_{G_{\mathfrak{F}},\overline{G_{\mathfrak{FN}}}}(G)\ne G$, and the factor group $\tilde{\mathrm{F}}_{\Phi_{G_{\mathfrak{F}}}}(G)\cap \Phi_{G_{\mathfrak{F}},\overline{G_{\mathfrak{FN}}}}(G)/\Phi_{G_{\mathfrak{F}}}(G)$ is solvable, then $\Phi_{G_{\mathfrak{F}}}(G)=\Phi_{G_{\mathfrak{F}},\overline{G_{\mathfrak{FN}}}}(G)\subset G_{\mathfrak{FN}}\subseteq\mathrm{F}_{\Phi_{G_{\mathfrak{F}}}}(G)$. In particular, if $G\ne G_{\mathfrak{F}}$ and $\mathrm{Soc}(G/\Phi_{G_{\mathfrak{F}}}(G))=\tilde{\mathrm{F}}_{\Phi_{G_{\mathfrak{F}}}}(G)/\Phi_{G_{\mathfrak{F}}}(G)$ is solvable, then $\Phi_{G_{\mathfrak{F}}}(G)=\Phi_{G_{\mathfrak{F}},\overline{G_{\mathfrak{FN}}}}(G)\subset G_{\mathfrak{FN}}=\tilde{\mathrm{F}}_{\Phi_{G_{\mathfrak{F}}}}(G)$. The corresponding consequences were obtained for products of non-empty radical formations, in particular for $\mathfrak{F}=\mathfrak{N}^{n-1}$, $n$ is any natural number.

Keywords: radical formations of finite groups, products of radical formations, $\mathfrak{F}$-radicals, intersections of maximal subgroups.

UDC: 512.542

Received: 01.06.2017



© Steklov Math. Inst. of RAS, 2026