RUS  ENG
Full version
JOURNALS // Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics) // Archive

PFMT, 2014 Issue 4(21), Pages 89–96 (Mi pfmt343)

This article is cited in 12 papers

MATHEMATICS

On $\sigma$-properties of finite groups I

A. N. Skiba

F. Scorina Gomel State University, Gomel, Belarus

Abstract: Let $\sigma=\{\sigma_i|i \in I\}$ be some partition of the set $\mathbb{P}$ of all primes, that is, $\mathbb{P}=\bigcup_{i\in I}\sigma_i$ and $\sigma_i\cap\sigma_j=\varnothing$ for all $i\ne j$. We say that a finite group $G$ is: $\sigma$-primary if $G$ is a $\sigma_i$-group for some $\sigma_i\in\sigma$; a $\sigma$-group if $G$ has a set $\mathcal{H}=\{H_1, \dots, H_t\}$ of Hall subgroups such that $H_i$ is $\sigma$-primary, $(|H_i|, |H_j|)=1$ for all $i\ne j$ and $\pi(G)=\pi(H_1)\cup\dots\cup\pi(H_t)$. We analyze some properties of finite $\sigma$-groups.

Keywords: finite group, $\sigma$-group, $\sigma$-soluble group, Hall subgroup, $\pi$-separable group.

UDC: 519.246

MSC: 20D10, 20D15, 20D30

Received: 14.09.2014

Language: English



© Steklov Math. Inst. of RAS, 2026