RUS  ENG
Full version
JOURNALS // Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics) // Archive

PFMT, 2010 Issue 1(2), Pages 28–30 (Mi pfmt154)

MATHEMATICS

On $\mathcal{U}\Phi$-hypercentre of finite groups

V. A. Kovaleva, A. N. Skiba

F.  Skorina Gomel State University, Gomel

Abstract: The product of all normal subgroups of $G$ whose all non-Frattini $G$-chief factors are cyclic is called the $\mathcal{U}\Phi$-hypercentre of $G$. The following theorem is proved.
Theorem. Let $X \le E$ be soluble normal subgroups of $G$. Suppose that every maximal subgroup of every Sylow subgroup of $X$ conditionally covers or avoids each maximal pair $(M,G)$, where $MX = G$. If $X$ is either $E$ or $F(E)$, then. $E \le Z_{\mathcal{U}\Phi}(G)$.

Keywords: $\mathcal{U}\Phi$-hypercentre, supersoluble group, maximal pair, (conditionally) cover-avoidance property of subgroups, CAP-subgroup.

UDC: 512.542

Received: 27.01.2010



© Steklov Math. Inst. of RAS, 2026