RUS  ENG
Full version
JOURNALS // Prikladnaya Diskretnaya Matematika. Supplement // Archive

Prikl. Diskr. Mat. Suppl., 2025 Issue 18, Pages 258–262 (Mi pdma727)

Computational methods in discrete mathematics

Construction of strong pseudoprime carmichael numbers passing the Miller — Rabin test for many first prime bases

Yu. F. Boltnev


Abstract: The paper is devoted to a detailed description of an algorithm for constructing strong pseudoprime Carmichael numbers that pass the Miller — Rabin test for many of the first prime bases. Explicit formulas are obtained for calculating all prime moduli $p$ such that a fixed $b$ is a quadratic non-residue modulo $p$. Lower bound estimates of the constructed Carmichael numbers are provided. The software implementation of the proposed algorithm enabled the construction of a 3,055-digit strong Carmichael pseudoprime, which successfully passes the Miller — Rabin test for all integer bases below 2 371. This significantly surpasses previously reported results.

Keywords: strong pseudoprime, Carmichael number, Miller — Rabin test.

UDC: 511.172

DOI: 10.17223/2226308X/18/55



© Steklov Math. Inst. of RAS, 2026