RUS  ENG
Full version
JOURNALS // Prikladnaya Diskretnaya Matematika. Supplement // Archive

Prikl. Diskr. Mat. Suppl., 2025 Issue 18, Pages 65–69 (Mi pdma686)

Discrete Functions

Theoretical and probabilistic characteristics of the value of linear correlation of round functions of some FPE algorithms

A. V. Kargin


Abstract: We investigate probabilistic properties of the linear correlation (bias) in round functions of certain Format-Preserving Encryption (FPE) algorithms. We consider distributions arising from reducing uniformly distributed binary strings modulo a target alphabet of arbitrary size $ q \in \mathbb{N} $. This non-uniform distribution, denoted by $ G(\mathbb{Z}_{q^L}) $, plays a crucial role in FPE schemes such as FF3-1. We provide its explicit probability mass function and show that it depends on the relation between $ q^L $ and $ l = 2^{\lceil L \log_2 q \rceil} $. For the linear correlation coefficient
$$ L_\beta^{F} = \frac{1}{|X|} \textstyle\sum\limits_{x \in X} \chi_\beta(F(x)), $$
where $ F : \mathbb{Z}_{q^R} \to \mathbb{Z}_{q^L} $ is a random function with values distributed according to $ G(\mathbb{Z}_{q^L}) $, we derive two equivalent formulas for the expected value:
$$ \mathbb{E}[L_\beta^{F}] = \frac{1}{l} {\textstyle\sum\limits_{i=0}^{l - q^L - 1}} \chi_\beta(i), \text{and} \mathbb{E}[L_\beta^{F}] = -\frac{1}{l} {\textstyle\sum\limits_{i=l - q^L}^{q^L - 1}} \chi_\beta(i). $$
We also establish that the equality $ \mathbb{E}[L_\beta^{F}] = 0 $ holds if and only if the canonical prime factorization of $ q^L $ contains the prime $ 2 $ and $ q^L / \beta $ is a power of 2. The variance of $ L_\beta^{F} $ is given by
$$ \mathbb{D}[L_\beta^{F}] = \frac{1}{|X|} \left(1 - (\mathbb{E}[\chi_\beta(F(x))])^2 \right). $$
Finally, we describe the full probability distribution of $ L_\beta^{F} $. For the finite Abelian groups $ X = \mathbb{Z}_q^n $, $ Y = \mathbb{Z}_q^m $ and a random function $ F $ distributed according to $ G $, the probability that $ L_\beta^{F} = \hat{\gamma} $ is determined by the combinatorial structure of how often each value from $ \mathbb{Z}_{q^L} $ appears in the outputs of $ F $. Specifically, this probability corresponds to a weighted sum over multinomial distributions, where each term accounts for a particular frequency distribution of the character values $ \chi_\beta(F(x)) $.

Keywords: FPE algorithms, linear method of cryptographic analysis, linear correlation.

UDC: 004.056

DOI: 10.17223/2226308X/18/14



© Steklov Math. Inst. of RAS, 2026