RUS  ENG
Full version
JOURNALS // Prikladnaya Diskretnaya Matematika. Supplement // Archive

Prikl. Diskr. Mat. Suppl., 2025 Issue 18, Pages 42–45 (Mi pdma681)

Theoretical Foundations of Applied Discrete Mathematics

On linear translators and boomerang connectivity tables over Abelian groups

B. A. Pogorelov, M. A. Pudovkina


Abstract: In 2018 in order to study the resistance of a block cipher against boomerang attacks, a tool called the Boomerang Connectivity Table (BCT) for cryptographic transformations on $\mathbb{F}_{p^m}$ was introduced, where usually $p=2$. We generalize BCT $b(s)$ of a permutation $s$ over an arbitrary finite Abelian group $(X,+)$ and also its boomerang-uniformity ${\sigma^{(b)}}(s)$, which is equal to the maximal element of BCT $b(s)$. We study XSH-block ciphers whose round function consists of key-addition layer, $s\in S(X)$ and $h \in {\rm{Hol}}(X, + )$, where ${\rm{Hol}}(X, + )$ is the holomorph of $(X, + )$. If $X=\mathbb{F}^{n}_{2^m}$, then SPN-ciphers with a linear transformation are XSH-ciphers. We study influence of a linear translator of $s$ on properties of BCT and get boomerang-uniformity of XSH-ciphers estimates. For $X\in \{\mathbb{F}^{n}_{2^m}, \mathbb{Z}_{2^{n}} \}$, we provide examples.

Keywords: Boomerang Connectivity Table $($BCT$)$, holomorph, automorphism group, linear translator, boomerang-uniformity, boomerang attack.

UDC: 519.7}\maketitle

DOI: 10.17223/2226308X/18/9



© Steklov Math. Inst. of RAS, 2026