RUS  ENG
Full version
JOURNALS // Prikladnaya Diskretnaya Matematika. Supplement // Archive

Prikl. Diskr. Mat. Suppl., 2025 Issue 18, Pages 38–42 (Mi pdma680)

Theoretical Foundations of Applied Discrete Mathematics

An improved upper bound for the number of plateaued binary mappings

K. N. Pankov


Abstract: This paper presents a refined formulation for the distribution of a part of the vector of spectral coefficients of linear combinations of coordinate functions of a random binary mapping. Using this result, a theorem is obtained that allows one to estimate from above the probability that a randomly selected binary mapping is plateaued for some values of the mapping parameters. Let for an arbitrary $0<\gamma < {1}/{3}$ for all sufficiently large $n$ be $k( {5+2\log _2 n})+6m\le n( {{1}/{3}-\gamma } )$, $k\log_2(ne) - (k-1/2)\log_2k < r < {n}/{2}$, $k < 2n\gamma/\ln n$, and the function $f:\{0,1\}^n\to\{0,1\}^m$ be chosen randomly and with equal probability. Let $\Pi(r)$ denote the set of all plateaued binary mappings of order $2r$. Then the following inequality is true:
\begin{gather*} \Pr\left[f(x) \in \Pi(r) \right] \le\\ \le \left(\exp(-0{,}1 \cdot 2^{n\gamma + m -\log_2n})\theta_4 + \theta_5\frac{\exp(-0{,}12 \cdot 2^{n\gamma+3k-\log_2n})} {\exp_2(T(n,m,k))}|\Re(m)|^{M(n,k)} \right)\times \\ \times 3^{M(n,k)(2^m - 1)} + \frac{\left( {1 + {\theta _6}{n^{ - 3/2}}{2^{ - 4m}}} \right)|\Re(m)|^{M(n,k)}}{\exp_2(T(n,m,k))}{\left( {1 + 2{e^{ - {2^{n - 2r - 1}}}}} \right)^{M(n,k)(2^m-1)}}, \end{gather*}
where
\begin{gather*} \Re (m)=\Bigr\{r =\left(r_J: \emptyset \ne J\subset \{1,\ldots,m\} \right) \in \left( \mathbb{Z}_{2^{m-1}} \right)^{2^{m}-1}:\\ \forall s\in \{1,\ldots,m\} \forall \delta \in V_m \textstyle\sum\limits_{J\subset \{1,\ldots,m\},s\in J} {(-1)^{(\delta ,\psi_m(J))}r_J } =0 \Bigr\}; \end{gather*}
$|\theta_1(a)|\le 1$; $|\theta_2(a)|\le 286{,}9$; $|\theta_3(a)|\le 1$. This theorem allows one to obtain upper bounds for the number of plateaued mappings, improving the results obtained by the author earlier.

Keywords: information security, cryptography, spectral coefficient, local limit theorem, plateaued binary mapping, upper bound.

UDC: 519.214

DOI: 10.17223/2226308X/18/8



© Steklov Math. Inst. of RAS, 2026