RUS  ENG
Full version
JOURNALS // Prikladnaya Diskretnaya Matematika. Supplement // Archive

Prikl. Diskr. Mat. Suppl., 2025 Issue 18, Pages 23–26 (Mi pdma676)

Theoretical Foundations of Applied Discrete Mathematics

Some periodic and statistical properties of piecewise polynomial sequences over primary residue rings

A. R. Vasin, T. I. Lipina


Abstract: We study periodic and statistical properties of piecewise polynomial sequences (PP-sequences) over the primary residue ring $R=\mathbb{Z}_{p^n}$ modulo $p^n$. For an element $x \in R$ in the form $x = p^l \hat x$, $\hat x \in R^*$, $0 \le l \le n$, and a polynomial $F(x) = f_0 + f_1 x + \ldots + f_d x^d \in R[x]$ define a piecewise polynomial function $\phi_F \colon R\to R$ as $\phi_F(x) = \phi_F(p^l\hat{x}) = f_0 + p^l(f_1 \hat x + \ldots+ f_d \hat x^d)$, and a PP-sequence as $x_0,x_1 = \phi_F(x_0),\ldots,x_{m+1} = \phi_F(x_m),\ldots$ for some $x_0 \in R$. In the binary case $p=2$, we obtain a criterion for the transitivity of piecewise polynomial transformations in terms of the generating polynomial coefficients: a PP-function $\phi_F$ is transitive over $\mathbb{Z}_{2^n}$ for any $n \ge 1$, if and only if
$$f_0 \equiv 1 \pmod 2,\ f_1+f_3+\ldots+f_{d'} \equiv 1 \pmod 4,\ f_2+f_4+\ldots+f_{2\lfloor d/2 \rfloor} \equiv 0 \pmod 4,$$
where $d' = d$ if $d$ is odd, and $d'=d-1$ otherwise. For $p>2$, we derive nontrivial bounds for the discrepancy of normalized PP-sequence segments. Let $\{x_i\}_{i=0}^\infty$ be a PP-sequence of period $q$ over $R=\mathbb{Z}_{q}$, where $q = p^n$, $p > 2$, consider the sequence $P = \{y_i\}_{i=0}^\infty \in [0,1)^\infty$, where $y_i = x_i / q$. Let $V(R) = \dfrac{4}{\pi^2} n\ln p + \dfrac{4}{5}$. For $d \ge 2$, $(d,p)=1$, $1 \le l \le q$, the discrepancy $D_l$ of $P$ is bounded as
$$D_l(P) < 1/q + 3 V(R) p^{-1/(2s)} l^{-1/2} q^{1/2}, \text{where }s=d^{\sqrt{3p/2}+1}.$$
Also, we derive nontrivial estimates for the autocorrelation coefficients of PP-sequence segments of length $p^n$. Consider the autocorrelation coefficients $A_{\phi_F}(l,s,g)$ of a PP-sequence $\{x_i\}_{i=0}^\infty$ of period $q$ over $R=\mathbb{Z}_{q}$, $q=p^n$, $p>2$, which are defined as $A_{\phi_F}(l,s,g) = \sum\limits_{i=0}^{l-1} e^{2 \pi i g (x_i - x_{i+s})/q}$. For $d \ge 2$, $(d,p)=1$, and $h = q/(q, g)$, we have
$$|A_{\phi_F}(q,s,g)| < 4{,}41 h^{- 1/d^s}q + 2sp^{-1}q.$$


Keywords: piecewise polynomial sequences, transitivity, discrepancy, autocorrelation coefficients.

UDC: 512.547+519.714

DOI: 10.17223/2226308X/18/4



© Steklov Math. Inst. of RAS, 2026