Theoretical Foundations of Applied Discrete Mathematics
Some periodic and statistical properties of piecewise polynomial sequences over primary residue rings
A. R. Vasin,
T. I. Lipina
Abstract:
We study periodic and statistical properties of piecewise polynomial sequences (PP-sequences) over the primary residue ring
$R=\mathbb{Z}_{p^n}$ modulo
$p^n$. For an element
$x \in R$ in the form
$x = p^l \hat x$,
$\hat x \in R^*$,
$0 \le l \le n$, and a polynomial
$F(x) = f_0 + f_1 x + \ldots + f_d x^d \in R[x]$ define a piecewise polynomial function
$\phi_F \colon R\to R$ as $\phi_F(x) = \phi_F(p^l\hat{x}) = f_0 + p^l(f_1 \hat x + \ldots+ f_d \hat x^d)$, and a PP-sequence as $x_0,x_1 = \phi_F(x_0),\ldots,x_{m+1} = \phi_F(x_m),\ldots$ for some
$x_0 \in R$. In the binary case
$p=2$, we obtain a criterion for the transitivity of piecewise polynomial transformations in terms of the generating polynomial coefficients: a PP-function
$\phi_F$ is transitive over
$\mathbb{Z}_{2^n}$ for any
$n \ge 1$, if and only if
$$f_0 \equiv 1 \pmod 2,\ f_1+f_3+\ldots+f_{d'} \equiv 1 \pmod 4,\ f_2+f_4+\ldots+f_{2\lfloor d/2 \rfloor} \equiv 0 \pmod 4,$$
where
$d' = d$ if
$d$ is odd, and
$d'=d-1$ otherwise. For
$p>2$, we derive nontrivial bounds for the discrepancy of normalized PP-sequence segments. Let
$\{x_i\}_{i=0}^\infty$ be a PP-sequence of period
$q$ over
$R=\mathbb{Z}_{q}$, where
$q = p^n$,
$p > 2$, consider the sequence
$P = \{y_i\}_{i=0}^\infty \in [0,1)^\infty$, where
$y_i = x_i / q$. Let
$V(R) = \dfrac{4}{\pi^2} n\ln p + \dfrac{4}{5}$. For
$d \ge 2$,
$(d,p)=1$,
$1 \le l \le q$, the discrepancy
$D_l$ of
$P$ is bounded as
$$D_l(P) < 1/q + 3 V(R) p^{-1/(2s)} l^{-1/2} q^{1/2}, \text{where }s=d^{\sqrt{3p/2}+1}.$$
Also, we derive nontrivial estimates for the autocorrelation coefficients of PP-sequence segments of length
$p^n$. Consider the autocorrelation coefficients
$A_{\phi_F}(l,s,g)$ of a PP-sequence
$\{x_i\}_{i=0}^\infty$ of period
$q$ over
$R=\mathbb{Z}_{q}$,
$q=p^n$,
$p>2$, which are defined as $A_{\phi_F}(l,s,g) = \sum\limits_{i=0}^{l-1} e^{2 \pi i g (x_i - x_{i+s})/q}$. For
$d \ge 2$,
$(d,p)=1$, and
$h = q/(q, g)$, we have
$$|A_{\phi_F}(q,s,g)| < 4{,}41 h^{- 1/d^s}q + 2sp^{-1}q.$$
Keywords:
piecewise polynomial sequences, transitivity, discrepancy, autocorrelation coefficients.
UDC:
512.547+
519.714
DOI:
10.17223/2226308X/18/4