RUS  ENG
Full version
JOURNALS // Prikladnaya Diskretnaya Matematika. Supplement // Archive

Prikl. Diskr. Mat. Suppl., 2023 Issue 16, Pages 136–140 (Mi pdma629)

This article is cited in 1 paper

Applied Theory of Coding and Automata

Calculation of error-correcting pairs for an algebraic-geometric code

E. S. Malyginaa, A. A. Kuninetsb

a Immanuel Kant Baltic Federal University, Kaliningrad
b ОНК «Институт высоких технологий» БФУ им. И. Канта, г. Калининград

Abstract: Error-correcting pairs are calculated explicitly for an arbitrary algebraic-geometric code and its dual code. Such a pair consists of codes that are necessary for an effective decoding algorithm for a given code. The type of pairs depends on the degrees of divisors with which both the original code and one of the codes from error-correcting pair are constructed. So for the algebraic-geometric code $\mathcal{C}_{\mathscr{L}}(D,G)$ of the length $n$ associated with a functional field $F/\mathbb{F}_q$ of genus $g$ the error-correcting pair with number of errors $t=(n-\deg(G)-g-1)/{2}$ is $(\mathcal{C}_{\mathscr{L}}(D,F), \mathcal{C}_{\mathscr{L}}(D,G+F)^\bot)$ or $(\mathcal{C}_{\mathscr{L}}(D,F)^\bot,\mathcal{C}_{\mathscr{L}}(D,F-G))$. For the dual code $\mathcal{C}_{\mathscr{L}}(D,G)^\bot$ the error-correcting pair with number of errors $t=(\deg(G)-3g+1)/{2}$ is $\mathcal{C}_{\mathscr{L}}(D,F),\mathcal{C}_{\mathscr{L}}(D,G-F))$. Considering each component of pair as MDS-code we obtain additional conditions on degrees of divisors $G$ and $F$. In addition, error-correcting pairs are calculated for subfield subcodes $\mathcal{C}_{\mathscr{L}}(D,G)|_{\mathbb{F}_p}$ and $\mathcal{C}_{\mathscr{L}}(D,G)^\perp|_{\mathbb{F}_p}$ where $\mathbb{F}_p$ is a subfield of $\mathbb{F}_q$. The form of a first component in the pair depends on degrees of divisors $G$ and $F$ and in some cases on genus $g$.

Keywords: function field, algebraic-geometric code, error-correcting pair, subfield subcodes.

UDC: 519.17

DOI: 10.17223/2226308X/16/36



© Steklov Math. Inst. of RAS, 2026