This article is cited in
1 paper
Discrete Functions
Some classes of resilient functions over Galois rings and their linear characteristics
O. V. Kamlovskiia,
K. N. Pankovbc a LLC "Certification Research Center", Moscow
b Moscow Technical University of Communications and Informatics
c Russian Quantum Center, Skolkovo, Moscow
Abstract:
Let
$R=\text{GR}(q^l,p^l)=\{r_1,\ldots,r_{q^l}\}$ be a Galois ring. Let
$A_n(R)$ be a set of all affine functions $g(\vec x)=a_0+a_1x_1+\ldots+a_nx_n=a_0+\langle \vec a,\vec x \rangle$, where
$\vec x=(x_1,\ldots,x_n)$,
$a_0\in R$,
$\vec a=(a_1,\ldots,a_n)\in R^n$. We present some classes of resilient function
$f:R^n\to R$ with the specified value of linear characteristic
$C(f)$, where $C(f)=\max_{a\in R\setminus \{0\}}\max_{g\in A_n(R)}\left|\sum\limits_{x_1,\ldots,x_n\in R}{\chi(af(\vec x)-g(\vec x))} \right|$ and
$\chi$ is the canonical additive character of the ring
$R$. In the paper, we describe the function
$f$ using a branching construction of the given functions
$f_1,\ldots,f_{r_{q^l}}$ in
$n-1$ variables. We prove that in the case when the functions
$f_1,\ldots,f_{r_{q^l}}$ are
$k$-resilient, the resulting function
$f$ is also
$k$-resilient. Moreover,
$C(f)\le C(f_{r_1})+\ldots+C(f_{r_{q^l}})$. We also describe the function $f(\vec x,\vec y)=\langle \phi(\vec x),\vec y\rangle+h(\vec x)$, where
$n=2k$,
$\phi:R^k\to R^{k}$,
$h:R^k\to R$,
$\vec x$,
$\vec y\in R^k$. It is known that in the case
$\phi(R^k)\subset (R^*)^k$ (
$R^*$ is the group of units in the ring
$R$) the function
$f$ is
$(k-1)$-resilient. We prove that in the case
$|\phi^{-1}(\vec c)|\le t$ for all
$\vec c\in R^k$ the enequality
$C(f)\le q^{k(2l-1)}$ is true.
Keywords:
discrete functions, resilient functions, Galois rings, linear characteristic of functions.
UDC:
511.336+
519.113.6
DOI:
10.17223/2226308X/16/5