RUS  ENG
Full version
JOURNALS // Prikladnaya Diskretnaya Matematika. Supplement // Archive

Prikl. Diskr. Mat. Suppl., 2019 Issue 12, Pages 90–93 (Mi pdma443)

This article is cited in 1 paper

Mathematical Methods of Cryptography

Cryptanalysis of the ACBF encryption system

I. V. Borovkova, I. A. Pankratova

Tomsk State University

Abstract: The ACBF encryption system with a functional key is considered. A public key in the cryptosystem is a vectorial Boolean function $f$ in $n$ variables obtained by permutation and negation operations on variables and coordinate functions of a bijective vectorial Boolean function $g$, that is, $f(x)=\pi_2(g^{\sigma_2}(\pi_1(x^{\sigma_1})))$, $\pi_1,\pi_2\in\mathbb{S}_n$ and $\sigma_1,\sigma_2\in\mathbb{F}_2^n$ are key parameters. A private key is $f^{-1}$. For two subsets of key parameters, namely for $\{\pi_1\}$ and $\{\pi_1,\pi_2\}$, attacks with known plaintexts are proposed.

Keywords: cryptosystem ACBF, vectorial Boolean functions, asymmetric cryptosystem, cryptanalysis.

UDC: 519.7

DOI: 10.17223/2226308X/12/28



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026